Posts

environment creation on python

  without conda : D:\Anney\environment>python -m venv magic_venv D:\Anney\environment>.\magic_venv\Scripts\activate (magic_venv) D:\Anney\environment> environment  conda: $ conda create --name [Virtual Environment Name] python=[Version you want to install] Example, $ conda create --name sample_venv python= 3.8  

Rock_paper Scissor

 

Pcb Fault Detection(Deep Learning Technique)

  Hello,  that's how I applied my deep Learning skills to my electronics industry  application Technical except After iterating through many models we find this model to be giving good accuracy and least loss. we used  #yolo  v5 with 4000 epoch. here us the latest update to the dataset. I have gathered data related to pcb fault detection. I have gathered a huge amount of image data. and I have open sourced it via-Kaggle. feel free to explore it.

AI_gym_assistent

 

what is good dataset?

Image
    First things first, we need  to learn how to identify good data set! .I can make it easy for you  acronyms:                                                                            R-O-C-C-C                                                                                                                        R for reliable.       Like a good friend, good data sources are reliable. With this data you can  trust that you're getting accurate,  complete and unbiased information  that's been vetted and proven fit for use. O is for original.       There's a good chance you'll discover data  through a second or third party source.  To make sure you're dealing with good data,  be sure to validate it with the original source. C is for comprehensive.       The best data sources contain  all critical information needed to  answer the question or find the solution.  Think about it like this.  You wouldn't want to work for a company just because you  found one great

image clustering technique using Kmeans

Image
 Kmeans algorithm is widely used to cluster image i.e grouping the image as per the color.  Kmeans basically use the technique to form a cluster by making decision boundry the code below will help you to get the proper grip on the idea. code import numpy as np import cv2 import matplotlib.pyplot as plt original_image = cv2.imread("/content/sample_data/ocen.png") original_image this few lines is importing essential lib. and uploading the image to see the cluster image of it. img=cv2.cvtColor(original_image,cv2.COLOR_BGR2RGB) #Next, converts the MxNx3 image into a Kx3 matrix where K=MxN and each row is now a vector in the 3-D space of RGB. vectorized = img.reshape(( -1 , 3 )) #We convert the unit8 values to float as it is a requirement of the k-means method of OpenCV. vectorized = np.float32(vectorized) criteria is used for specific comand criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,  10 ,  1.0 ) K =  6 attempts= 10 ret,label,center=cv2.kmeans(vectorized,K, N

whats the difference between insert and append ? with python code.

"insert" and "append" method in list in Python bigginer basically get confused when to use insert and append method in list. heras is the very simple understanding format of  it.   insert: to add some element in the list at certain position. append: to add element in the list. code: append ................................................................................................................... shop=['bread','banana','egg'] shop.append("apple") print(shop) output: ['bread', 'banana', 'egg', 'apple'] ..................................................................... insert: python code: shop.insert(2,"lemmon") shop output: ['bread', 'banana', 'lemmon', 'egg', 'apple']