dataset: https://www.kaggle.com/fmendes/fmendesdat263xdemos/download ......................................................................................................................................................... import pandas as pd import matplotlib.pyplot as plt import numpy as np import pickle from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression df_calories=pd.read_csv("ineuron/calories.csv") df_exercise=pd.read_csv("ineuron/exercise.csv") data=df_exercise.merge(df_calories, on='User_ID') #print(data.head()) #[:,0:-1] all rows and all expect last column (independent variable) also feature column #data_x = data.iloc[:,:-1].values data_x= df.loc[:,[ 'Weight','Age','Duration']] data_y=df.iloc[:,-1] #[:,-1]all rows and only last column (dependent variable) also target column #data_y = data.iloc[:,-1].values x_train,x_test,y_train,y_test = train_test_split(data_x,data_y,test...