Multiple linear Regression(update is yet to come by evening
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
data = pd.read_csv("taxi.csv")
#print(df.head())
#[:,0:-1] all rows and all expect last column (independent variable) also feature column
data_x = data.iloc[:,0:-1].values
#[:,-1]all rows and only last column (dependent variable) also target column
data_y = data.iloc[:,-1].values
x_train,x_test,y_train,y_test = train_test_split(data_x,data_y,test_size=0.3, random_state=0)
reg = LinearRegression()
reg.fit(x_train,y_train)
print("train_score=" ,reg.score(x_train,y_train))
print("train_score=" ,reg.score(x_test,y_test))
print(reg.predict([[80,1770000,6000,85]]))
Comments
Post a Comment