seaborn tutorial
# visualizing statistical relations
In [1]:
#relplot for ststtistical realation
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
In [16]:
a = sns.load_dataset("flights")
sns.relplot(x="passengers", y= "month", data=a)
Out[16]:
In [17]:
a = sns.load_dataset("flights")
sns.relplot(x="passengers",hue="year", y= "month", data=a)
Out[17]:
In [20]:
b=sns.load_dataset("tips")
sns.relplot(x="time", y="tip",data=b,kind="line")
Out[20]:
ploting catorigal data¶
In [21]:
sns.catplot(x="day",y="total_bill",data=b)
Out[21]:
In [24]:
sns.catplot(x="day", y="total_bill",data=b,kind="boxen")
Out[24]:
In [26]:
from scipy import stats
In [28]:
c=np.random.normal(loc=5,size =200,scale=5)
In [30]:
sns.distplot(c)
Out[30]:
multiplot grid¶
In [ ]:
In [33]:
a=sns.load_dataset("iris")
b= sns.FacetGrid(a,col="species")
b.map(plt.hist,"sepal_length")
Out[33]:
In [35]:
a=sns.load_dataset("flights")
b= sns.PairGrid(a)
b.map(plt.scatter)
Out[35]:
In [ ]:
plot-asthetic¶
In [36]:
sns.set(style="darkgrid")
a=sns.load_dataset("flights")
b= sns.PairGrid(a)
b.map(plt.scatter)
Out[36]:
In [42]:
sns.set(style="white",color_codes =True)
a= sns.load_dataset("tips")
sns.boxplot(x="day",y="total_bill" ,data=a)
Out[42]:
In [44]:
sns.set(style="white",color_codes =True)
a= sns.load_dataset("tips")
sns.boxplot(x="day",y="total_bill" ,data=a)
sns.despine(offset=10,trim=True)
In [46]:
c=sns.color_palette()
sns.palplot(c)
In [ ]:
Comments
Post a Comment