seaborn tutorial

 # visualizing statistical relations

In [1]:
#relplot for ststtistical realation
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd 
In [16]:
a = sns.load_dataset("flights")
sns.relplot(x="passengers", y= "month", data=a)
Out[16]:
<seaborn.axisgrid.FacetGrid at 0x1ea533d01f0>
In [17]:
a = sns.load_dataset("flights")
sns.relplot(x="passengers",hue="year", y= "month", data=a)
Out[17]:
<seaborn.axisgrid.FacetGrid at 0x1ea53d35400>
In [20]:
b=sns.load_dataset("tips")
sns.relplot(x="time", y="tip",data=b,kind="line")
Out[20]:
<seaborn.axisgrid.FacetGrid at 0x1ea53dae940>

ploting catorigal data

In [21]:
sns.catplot(x="day",y="total_bill",data=b)
Out[21]:
<seaborn.axisgrid.FacetGrid at 0x1ea53dddc40>
In [24]:
sns.catplot(x="day", y="total_bill",data=b,kind="boxen")
Out[24]:
<seaborn.axisgrid.FacetGrid at 0x1ea53eaf7f0>
In [26]:
from scipy import stats
In [28]:
c=np.random.normal(loc=5,size =200,scale=5)
In [30]:
sns.distplot(c)
Out[30]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ea53f66820>

multiplot grid

In [ ]:
 
In [33]:
a=sns.load_dataset("iris")
b= sns.FacetGrid(a,col="species")
b.map(plt.hist,"sepal_length")
Out[33]:
<seaborn.axisgrid.FacetGrid at 0x1ea53fff100>
In [35]:
a=sns.load_dataset("flights")
b= sns.PairGrid(a)
b.map(plt.scatter)
Out[35]:
<seaborn.axisgrid.PairGrid at 0x1ea54117580>
In [ ]:
 

plot-asthetic

In [36]:
sns.set(style="darkgrid")
a=sns.load_dataset("flights")
b= sns.PairGrid(a)
b.map(plt.scatter)
Out[36]:
<seaborn.axisgrid.PairGrid at 0x1ea540e4730>
In [42]:
sns.set(style="white",color_codes =True)
a= sns.load_dataset("tips")
sns.boxplot(x="day",y="total_bill" ,data=a)
Out[42]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ea5530d7f0>
In [44]:
sns.set(style="white",color_codes =True)
a= sns.load_dataset("tips")
sns.boxplot(x="day",y="total_bill" ,data=a)
sns.despine(offset=10,trim=True)
In [46]:
c=sns.color_palette()
sns.palplot(c)
In [ ]:
 

Comments

Popular posts from this blog

environment creation on python

what is good dataset?

scatterplot/ violon plot /histogram /boxplot